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Abstract 

Humans can learn associations between visual stimuli and motor responses from just a single 

instruction. This is known to be a fast process, but how fast is it? To answer this question, we asked 

participants to learn a briefly presented (200ms) stimulus-response rule, which they then had to 

rapidly apply after a variable delay of between 50 and 1300ms. Participants showed a longer 

response time with increased variability for short delays. The error rate was low and did not vary 

with the delay, showing that participants were able to encode the rule correctly in less than 250ms.  

This time is close to the fastest synaptic learning speed deemed possible by diffusive influx of AMPA 

receptors. Learning continued at a slower pace in the delay period and was fully completed in 

average 900ms after rule presentation onset, when response latencies dropped to levels consistent 

with basic reaction times.  A neural model was proposed that explains the reduction of response 

times and of their variability with the delay by i) a random synaptic learning process that generates 

weights of average values increasing with the learning time, followed by ii) random crossing of the 

firing threshold by a leaky integrate-and-fire neuron model, and iii) assuming that the behavioural 

response is initiated when all neurons in a pool of m neurons have fired their first spike after input 

onset. Values of m=2 or 3 were consistent with the experimental data. The proposed model is the 

simplest solution consistent with neurophysiological knowledge. Additional experiments are 

suggested to test the hypothesis underlying the model and also to explore forgetting effects for 

which there were indications for the longer delay conditions. 
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1. Introduction 

A unique human skill is the ability to understand task instructions. For instance: “Each time there is 

an animal in the pictures I will show you, press the red button”. Over the years, numerous 

psychophysical experiments have made use of this ability. However, only recently has research 

started to focus on how the brain converts instructions into mental programs. This is the area of 

“instruction-based learning (IBL)” (Bugmann, 2009, Ruge and Wolfensteller, 2010; Bugmann, 2012, 

Hartstra et al., 2012, Wolfensteller and Ruge, 2012) or “rapid instructed task learning (RITL)” (Cole et 

al., 2010).  

The observations that IBL i)  takes at most a few seconds (see e.g. Ruge and Wolfensteller, 2010), ii) 

is a one-shot process and iii) is assumed to establish relations between distant brain areas, have 

triggered the development of a computational model of fast learning across several neuronal relays 

Bugmann (2009, 2012). However, there were no hard data on the actual speed of human learning 

and no clear information on how fast synapses can learn that could be used to constrain a model.   

The questions addressed in this paper are: How fast is “fast” learning? Is the behavioural learning 

time consistent with the hypothesis that Stimulus-Response (SR) rules are encoded in synaptic 

weights? 

To answer the first question (section 2), we set up an experiment to determine the actual 

behavioural learning time of humans. In this experiment, participants were visually presented for a 

very short time (200ms) with a stimulus-response rule to learn.  After a time interval of between 50 

and 1300ms they were then asked to apply the rule. The expectation was that they would not be 

able to reply before learning was completed, causing increased response times for short intervals.  

Answering the second question was more convoluted. First, we established what anatomical 

pathways were most likely to support fast learning (section 3). Secondly, we used pathway 

assumptions to analyse the experimental response times in terms of a constant propagation time 

added to a delay-dependent rule retrieval process, allowing us to characterize the learning element 

of the circuit (section 4). We then sought to explain the characteristics of the learning element in 

terms of synaptic learning rule and firing of a leaky integrate-and-fire (LIF) model of a neuron, or a 

number of those (section 5). Once we were satisfied that a LIF model-based neural system could 

explain the data, we use that model to infer the values the synaptic weight values achieved after 

different delays in the experiment. This revealed the time course of synaptic learning during SR rule 

presentation and in the delay before rule retrieval.  

The results of this work show that experimental data are consistent with an involvement of the 

hippocampus in both simple reaction time tasks and SR encoding and retrieval tasks. They require 

synaptic modifications as fast as seems physically possible. The variability of the response times is 

consistent with a few independent neurons being required to encode the SR rule. 
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2. Experiment 

2.1 Method 

2.1.1 Participants 

Eleven people, eight male and three female, participated in this experiment with ages ranging from 

21 to 62 years (mean = 42.9 years, sd = 13.96 years).  

2.1.2 Procedure 

Participants were required to learn a simple stimulus-response (SR) rule and then rapidly apply that 

rule to a single following stimulus. The rule instruction took the form of an image showing a capital 

letter in the middle of the image along with either a left-pointing or right-pointing arrow, also placed 

to the left or the right of the letter (Fig. 1B). The letter indicated the stimulus and the arrow the 

required response, a key press performed using right or left index finger (left or right shift key on 

keyboard). This rule was displayed for 200ms, followed by a blank screen (termed the “delay” D) 

with a duration randomly selected from 50, 100, 300, 500, 700, 900, 1100, or 1300 ms. After the 

blank screen, the test stimulus was presented until the response was produced or until a 5 second 

timeout (Fig 1A). If the test stimulus was the same letter as that used in the previously displayed SR 

rule then participants had to react using either left or right index fingers  according to the arrow 

indicated by the rule. If the stimulus did not correspond to letter of the prior rule then participants 

were asked to press the space bar with either thumb. Each session consisted of a list of 160 SR rules 

randomly created from combinations of each of 26 capital letters and left and right response 

directions. Of these, there were 96 trials where the stimulus matched that used in the rule, and 64 

where there was a mismatch. Each session was preceded by 20 baseline reaction time 

measurements, where participants immediately responded to left or right arrows by pressing keys 

with left or right index fingers as quickly as possible. After this, five familiarisation trials of the main 

procedure were run.  Participants completed such a session four times, each time with a different 

random ordering of the 160 trials. Each session took approximately 8 minutes to complete, with 

participants typically leaving a few hours between each session.  
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 A)     B) 

Figure 1.  A. Time line of the experiment. The Stimulus-Response rule is presented for 200ms. The 

delay D varies between 50ms and 1300ms. B. Format of the Stimulus-Response (S-R) rule 

presentation. In this example, the arrow instructs to press the right shift key (Response R) when 

the stimulus W is presented alone  

The experiment was designed using the free software OpenSesame (Mathôt et al., 2012), in Legacy 

mode, and run on Windows XP laptops. This mode is most stable but can add 15-20 ms to recorded 

response times (Mathôt et al., 2012). Participant response times (tR) were measured from the onset 

of the stimulus. It was expected that response times for longer delays would simply reflect a 

constant for each participant, based upon the time required to recall the association and respond 

accordingly (Fig 2). However, with shorter delays it was expected that the stimulus would be 

presented before the learnt association could be established. In these cases there would be an 

increase in response time that would also include latencies that would reflect the additional time 

required to complete the formation of the SR association. 

 

Figure 2. Conceptual response expectation.  If the stimulus is presented before learning is 

completed, the measured response time (full thick line) is expected to deviate from a constant 

value defined by the association retrieval time AT and the baseline reaction time RT. 

 

One of the reasons for using letters of the alphabet as stimuli is that participants had already 

developed connections to recognize these allowing the experiment to focus on learning the 

associative part of the task.  
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2.2 Results 

2.2.1 Accuracy 

Overall participants had responded accurately to 94.02% of stimuli. An ANOVA analysis of the 

distribution of accurate responses over the four sessions and eight different delay times did not 

reveal any significant (F < 1) main effect or an interaction between these factors. 

2.2.2 Reaction Times 

The response times in each SR trial were measured from the onset of the stimulus, and were only 

considered for analysis if they originated from trials with correct responses. For each delay, there 

were 12 measurements with target part of the SR rule and 8 with a non-target.   

Mean response times were calculated for each participant across each combination of the four 

sessions and for eight delay times. During these calculations, outlier removal was performed by 

rejecting responses of less than 100ms, greater than 2000ms, and those that fell outside of 2.5 

standard deviations of the cell mean. The same procedure was also applied to the 20 baseline RT 

trials that preceded each session. These values were then subtracted from responses of the 

corresponding session of the SR Task, giving us latencies free from between-participant variance in 

baseline RT, and are summarised in Figure 3.  

 

Figure 3.  SR task reaction time latencies across the four sessions and eight delay conditions. 

Error bars represent 0.95 confidence intervals.  

These data were then used as the dependant variable in a repeated measures ANOVA with within-

participant factors of session (1-4) and delay (50, 100, 300, 500, 700, 900, 1100, 1300ms). In cases 

where Mauchly’s test revealed a violation of the assumption of sphericity reported significance 
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values were corrected using Greenhouse-Geisser estimates. This analysis revealed a significant of 

delay (F(7,42)=25.63, η2= .72, p < 0.001), a significant interaction between the session and delay 

(F(21,210)=3.90, η2= .28, p < 0.001), and a marginal effect of session (F(3,18)=3.86, η2= .28, p = 

0.059).  

A posthoc examination of latency differences between delay conditions, shown in Figure 4, was 

conducted using paired-sample t-tests between RTs for each of the conditions. These revealed that 

RTs for the 50ms delay were significantly ( p < 0.05) greater than those of all the conditions with 

longer delay durations. This was also the case for the 100, 300, and 500ms delay conditions. RTs for 

the 700ms delay condition were not found to be significantly different from those of the 900 (t = 

0.42), 1000 (t = 0.44), or 1300ms (t =-1.89) delay conditions. Neither was there a significant 

difference between RTs between the 900 and 1100ms delay conditions (t = -0.02). However, RTs for 

the 900ms condition were found to be significantly less than that of the 1300ms condition, with RTs 

for the 1100ms condition also significant less than that of the 1300ms condition. As we will attempt 

to replicate this pattern of using neural models we have made an attempt to verify their findings by 

making each of the paired-sample posthoc t-tests subject to Monte-Carlo simulation with 1000 

different random permutations of participant-specific averages between the delay conditions. These 

simulations did not highlight any differences to the pattern of significance. 

 

Figure 4.  SR task reaction time latencies across eight delay conditions when collapsed across 

the four session conditions. Error bars represent 0.95 confidence intervals.  

Examination of the interaction between the experiment factors of session and delay were made by 

conducting further ANOVAs testing for the effect of session in each of the delay conditions, and 

testing for the effect of delay in each of the sessions. The former of these series of analyses revealed 

that there was a significant effect of session in the 50 (F(3,30)=6.68, η2= .40, p < 0.05) and 100ms 

(F(3,30)=4.15, η2= .29, p < 0.05) delay conditions, but not in any of the longer delays  (300ms: 

F(3,30)=3.17, η2= .24, p = 0.088; 500ms: F(3,30)=2.56, η2= .07 p = 0.12; 700ms: F(3,30)=2.42, η2= .08, 

p = 0.14; 900ms: F(3,30)=1.52, η2= .13, p = 0.25; 1100ms: F(3,30)=2.78, η2= .21, p = 0.094; 1300ms: 



To appear in Brain Research 

7 
 

F(3,30)=1.11, η2= .1, p = 0.35). Posthoc pairwise t-tests of the effect of session in the 50 and 100ms 

delays revealed the same pattern of significance. That is, response times were significantly longer in 

session 1 than the other three sessions, with no significant difference between response times in 

sessions 2, 3 and 4. In the next series of analyses we examined whether there was an effect of delay 

in each of the four sessions, with ANOVAs revealing significant effects of delay in each session 

(Session 1: F(7,70)=17.75, η2= .64 p < 0.001; Session 2: F(7,70)=19.25, η2= .66, p < 0.001; Session 3: 

F(7,70)=20.5, η2= .67, p < 0.001; Session 4: F(7,70)=13.15, η2= .57, p < 0.001). Further posthoc testing 

of the effect of delay within each session revealed a very similar pattern of significance to that of the 

main effect of delay in the original analysis. Finally, we then performed separate ANOVA analyses of 

the interaction between session and delay on each different pairwise combination of the four 

sessions. These revealed significant interactions between session and delay when comparing session 

1 with sessions 2 (F(7,70)=4.76, η2= .32, p < 0.05), 3 (F(7,70)=5.88, η2= .37, p < 0.01), or 4 

(F(7,70)=6.03, η2= .38, p < 0.01). However, there was no significant interaction (F < 1) in any of the 

pairwise comparisons between sessions 2, 3 and 4. 

 

2.2.3 Response time variability 

In order to examine the response generation process, we investigated the relation between the 

standard deviation of the response time with the average response time.  Figure 3 indicates that the 

response process has reached a stable state in sessions 2, 3 and 4. Therefore we focus on these 

sessions. Fig 5 shows the relation between time to response from the moment the stimulus is shown 

and its standard deviation.  

 

Figure 5. Standard deviation (SD) of the time to response Tr from the moment the test stimulus 

S that was part of the learnt SR rule is shown. The full circles symbols correspond to the average 

Tr and their SD for each value of the delay D, averaged over all subjects and sessions 2, 3 and 4. 

The linear fit represents the relation between SD and Tr for sessions 2, 3 and 4. 
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This relation is typical of two random processes operating in series, with a clear linear relationship 

between SD and reaction times combined with a consonant RT delay. This can be described as 

follows: 

)(21 DTTTr  ,    (1) 

where T1 is a random process with a constant average 1T  and variance SD1
2, and T2 has a variable 

average )(2 DT depending on the delay D, and a variance SD2
2(D) that increases with the average. 

One could, for instance, identify T1 with the information propagation process and that of muscle 

activation, and assume T2 to be the process of retrieval of the associated response from memory. 

The latter is then assumed to reflect the quality of SR encoding controlled by the value of D. If the 

parameters of T1 can be estimated, then the properties of T2 can be isolated.  For this, we can make 

use of following relations that are valid if T1 and T2 are independent random processes. 

))(()()( 2

2

1

22 DTSDTSDTrSD     (2) 

)(21 DTTTr      (3) 

To discover the properties of T2(D) we have four pieces of experimental information Tr, SD(Tr), RT, 

SD(RT)1. Both include a propagation time component. Whether it is possible to extract properties of 

T2(D) depends on the anatomical pathways used by the two tasks, the simple reaction time task and 

the rule retrieval task. Possible anatomical pathways are discussed in section 3. 

 The average of the RT over sessions 2, 3 and 4 is 315ms with a standard deviation SD(RT)=87ms. 

 

2.3 Summary of results 

The main finding of this experiment is that participants experience a significant increase in response 

time when applying an SR rule if a stimulus is presented less than 700ms (200ms rule presentation + 

500ms delay) after the presentation of the rule.  

The error rate was small at all delays, with no significant effect of the delay, indicating that for a 

learning time of 250ms (200ms presentation time + 50ms delay), there was already a fully functional 

encoding of the rule. The improvements in performance for longer learning times can be taken as an 

indication for a further strengthening of the encoding with time.  

Another effect observed in this experiment is the difference between the sessions, in that response 

times for delays equal to or less than 100ms were found to be significantly longer in the first session 

than any of the subsequent sessions. Session 1 appears to be a task acquisition session leading to a 

more stable response pattern for subsequent sessions.  

The response times curves show three phases. First, for short delays, there is a significant decrease 

of the response times with increased delays. In phase two, the response times then flattens out, 

                                                           
1
 In the reminder of the paper, we will use the symbol Tr and RT for average values. 
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until phase three around D=1300 where a significant increase in response time is observed. This 

increase correlates with subjects reporting a difficulty in remembering the rule for long delays. This 

could indicate the start of the decay of the encoded memory. Following parts of this paper focus on 

modelling phase one and two.   

The relation between response time and its standard deviation suggests that two random processes 

in series shape the behavioural response time. 

 

3. Anatomical basis for S-R learning 
 

Several pathways link visual input to finger movements as motor output. There is the traditional 

dorsal route, from V1 to V3, AIP, PMv (F5) and motor cortex (M1) (see e.g Sakata et al., 1997) with 

possibly two sub-routes (Grafton, 2010). AIP and F5 are the parietal and pre-motor regions 

respectively of hand and finger movement control. Recent data show that there are strong inputs to 

AIP from the ventral visual stream (area TE) (Borra et al., 2008). This enables a possible “ventral” 

route from V1 to V4, Tea/TEp, AIP, PMv, M1.  A third route has been suggested by Passingham and 

Toni (2001) from V1 to TE, PFC (46v) and PMv.  

 

A number of converging evidences point to the ventral route as a good candidate for fast S-R 

learning.  

Several participants reported using “visual memory” to recover the action associated with the 

stimulus letter.   The literature on associative visual memory shows that neurons in infero-temporal 

cortex (IT and its sub-areas TE, all representing the central visual field (Ungerleider et al., 2008)) 

were able to fire as if an absent visual pattern were present, upon presentation of its associated cue 

(see review in Osada et al., 2008). Experimental data by Naya et al., (1996) show that, when two 

stimuli have been associated during previous training, some IT neurons that normally respond to one 

of the two stimuli, also fire when the other stimulus is presented. According to Naya et al. (1996) this 

pair-recall effect is seen as part of mental imagery supported by information retrieval from long-

term memory. Such associative memory retrieval required the perirhinal area 36 to activate area TE, 

with an additional input from PFC (Ranganath et al., 2004). Brasted et al. (2003) argued that the 

hippocampus was required for “fast” learning of stimulus-response associations, although the term 

“fast” referred to tens of presentations. The hippocampal area CA1 is bi-directionally connected to 

area 36 (Naber et  al., 1999; Furtak et al., 2007, Kealy and Commins, 2011). CA1 could therefore act 

as the associative memory feeding back a representation of the response to area 36 upon 

presentation of the stimulus. 

Recall-related activity has been observed in the human (Gelbard-Sagiv et al., 2008) and monkey 

Hippocampus (Rolls and Xiang, 2006). In the one-trial learning experiment by Rolls and Xiang (2006), 

the observed response errors indicated that the recall cells coded for the place to be touched, not 

the actual movement to be done. A similar disconnection between recall and response was observed 

in IT by Messinger et al. (2005). This is what would be expected from a visual memory of the 

instruction. 

Regarding the response action initiation, several experiments have pointed to the lateral parietal 

area IPS (including AIP) as a necessary relay to produce the response in a learnt S-R rule (Bunge et al, 
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2002).  This makes the direct link between TE and PFC a less likely route to action. However, this link 

is required for learning associations between visual stimuli and motor responses and between two 

visual patterns. It is also needed for the retrieval of learnt associations (Bussey et al., 2002). The 

ventro-lateral PFC (VLPFC) is identified in multiple experiments as a necessary component of a S-R 

learning system (see review in Bunge et al., 2002. The VLPFC is bidirectionally connected to area TE 

(Rempel-Clower and Barbas , 2000) and modulates activity in the inferior temporal cortex (Fuster et 

al., 1985), areas TE and 36 (Zironi et al., 2001). TE receives input from PFC lateral areas 12, 46v. Area 

36 receives input from more orbital PFC areas 11, 12 (Rempel-Clower and Barbas , 2000). On the 

basis of lesion studies, Passingham et al. (2000) suggested that areas 12/45a are part of the circuitry 

that forms associations between visual cues and the actions they specify. The rostral part of PFC area 

12 (12r) is connected to AIP, TE and PMv (Borra et al., 2011) and appears to be well placed to control 

the learning and execution of S-R rules.  

The hippocampus does not receive direct inputs from PFC, but could be influenced via the VLPFC 

projections to area 36 and orbito-frontal to area 28 (entorhinal cortex) (Rempel-Clower and Barbas , 

2000).   

The association circuit is summarised in figure 6.  In the model developed in this paper, we propose 

that the PFC interacts with the ventral visual stream, from TE to 36/28, to store and retrieve 

associations, while the link between TE and AIP conveys the selected response towards the motor 

cortex.  PFC inputs to all these areas allow controlling learning and recall. These assumptions appear 

to be consistent with the available data on conditional visuo-motor associative learning and with 

anatomical data. The concept is consistent with results of Mruczek and Sheinberg (2007) showing 

that associative IT firing preceded action initiation and the strength of firing is correlated with the 

speed of the response. Thus, associative firing in IT appears to be a key step in task generation2.   

 

There is a lack of measurements on S-R learning as fast as reported here. Many results, come from 

experiments with trial-and-error learning lasting at least several minutes, analyzed with methods 

admittedly lacking temporal resolution (e.g. Murray et al., 2000). Existing electrophysiological data 

are not informative on fast learning. For PFC, several reports (e.g. Asaad et al., 1998) describe 

neurons in area 46, possibly including area 12, that responded to the stimulus, the response, and the 

conjunction of both, during trial-and-error learning.  Other PFC data focus on the retrieval of well 

learnt associations (e.g. Yamagata et al., 2012).  Similarly, data from TE and 36 are collected under 

conditions of retrieval (Osada et al., 2008). One FMRI experiment in humans was conducted with 

visual rule instructions as in our experiment, and with data analysis focusing on the execution phase 

after learning (Ruge and Wolfensteller, 2010).  The results inform on the changes of brain activity 

with repeated retrieval of four S-R rules, with IPS (including AIP) and PFC showing a decrease, while 

PM and visual areas showed an increase. These studies also showed a reduction in the response 

time by 60ms with practice. The hippocampus and IT showed no significant activation above baseline 

during retrieval. Our experiment also measures retrieval, but with very short retrieval delays, to 

probe early stages of the learning process.  

 

 

                                                           
2
 How perceptual information in IT/TE becomes mapped to action information in AIP does not appear to be 

documented. We assume that this has happened prior to associative learning, in the early stages of session 1. 
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Figure 6. Summary of the circuit proposed to implement the S-R task. The S-R rule is stored in 

the Hippocampus and the retrieved image of the desired response is fed back to area TE where 

it is mapped to a motor action via AIP. VLPFC and OPFC are managing the encoding and retrieval 

process. The thick line indicates a possible faster route, based on associations encoded in TE. 

In our model we will assume that during learning the fact that a letter and an arrow appear together 

is encoded in weights able to activate the representation of either member of the pair when  

presenting the other.  The image of the arrow, actual or generated, is picked up in TE to produce a 

response via AIP. The mapping between the representation of the arrow in TE and the 

representation of the action in AIP is assumed to be learnt during reaction time measurements, prior 

to the S-R experiment. Similarly, we assume that TE has already built representations of letters. 

It will be assumed that learning of the association between the representation of the stimulus and 

that of the response is Hebbian (Hopfield, 1982)and is supported by the visually-driven activation of 

both representations. At the end of the S-R presentation, activity and learning continues with the 

support of feedback from the PFC. During that time, the motor output is inhibited by the control 

circuit to prevent the activity representing the arrow from triggering an action. 

When the test stimulus is presented, PFC is inhibited by the control circuit, the motor system is dis-

inhibited, and the response is generated through the newly created connections. 
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4. Data interpretation 

The literature points strongly at an involvement of the hippocampus in rule encoding and retrieval 

measured by Tr. However, when reacting to existing associations, such as in the simple baseline 

reaction time task, there are  several possible routes. The shortest goes directly from TE to IP, as 

shown in Figure 7A. As can be seen this route would incur a propagation delay through the network 

of r1 and r2, plus  r0 . The latter represents the minimal firing time of a neuron when its weights are 

set to maximal values, where the delay is essentially determined by the arrival rate of input spikes.  

Therefore the total delay using this route can simply be expressed as: 

021 rrrRT  ,    (A-4) 

An alternative route for simple reaction times (not involving learning) might also involve the 

hippocampus, as shown in Figure 7B. This would incur delays further to the previous route by the 

addition of propagation delays r3 and r4, an extra r0, plus T20 , similar to r0 .  T20 is the minimal delay 

of a fully trained T2 process. Therefore, the total delay using a hippocampus base RT route would 

involve a delay of: 

20420301 rrrTrrrRT    (5) 

 

 
 

Figure 7. Considered anatomical paths for the simple RT task (A, B) and for the S-R retrieval 

task (C). Delays are explained in the text. 

Our aim is to investigate and model the SD characteristics of Tr, shown in Figure 7C, focussing upon 

the learning specific delay T2(D), the response time of neuron with partially trained weights, due to 

the training time limitation to TSR + D.  

If we assume the routes (A) and (B) for base RT then, when learning, the Tr becomes either: 

)(2430 DTrrrRTTra  .  (6) 
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)(220 DTTRTTrb      (7) 

Assuming that right-hand terms are independent processes, the variances of the response time 

(standard deviation SD squared) are given by: 

))(()()()( 2

2

430

222
DTSDrrrSDRTSDTrSDa    (8) 

))(()()()( 2

2

20

222
DTSDTSDRTSDTrSDb    (9) 

If we plot )()( 22 RTSDTrSD  )) versus Tr-RT for both routes (figure 8A), assuming a known 

underlying relation between SD(T2(D) versus Tr-RT, we can see that, the SD(T2(D)) versus Tr-T curve is 

shifted to the right for route A-C and left for route B-C.  The amount of right-shift is the minimum 

response time r0 of a TE neuron plus the propagation time r3+r4 between TE, the hippocampus and 

back. The amount of left shift is the minimal delay T20 of a fully trained process T2. 

A) B)  

Figure 8. A. Expected behaviour of a plot of )()( 22 RTSDTrSD   versus Tr-RT calculated 

from experimental data for two different connectivity models A+C and B+C.  The continuous 

line represents the behaviour of the underlying retrieval process. The flanking doted lines 

represent the result of the calculation applied to experimental data to produce figure B. B. 

Experimental behaviour of the SD calculated from data in figure 5. See the text for details of the 

calculations done. 

Figure 8A shows that the calculation of the properties of Tr-RT essentially shifts the curve of the 

retrieval process T2(D) laterally, but does not change its slope significantly.  

 Figure 8B shows the curve calculated from data in figure 5 and the experimental reaction time data. 

The horizontal axis represents Tr(D)-RT (RT=315ms). The vertical axis represents 

)()( 22 RTSDTrSD  . For SD(RT) we had to use a lower value (76 ms) for the standard deviation 

of RT (SD(RT)=87 ms). This was required because the experimental standard deviation of Tr at D=900 

ms was just above 76 ms. 

 To estimate the robustness of this result, we simulated the process in formula nf1 using the 

parameters from RT in section 2.2.3 for process T1 and generated 4003 normally distributed random 

times for 8 different average times from 50 ms to 225 ms, with process T2 with a standard deviation 

                                                           
3
 With 11 subjects, producing 12 responses for each delay in each of 3 sessions, we have 396 measurements 

for each delay.  
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set by SD2 = 0.74*T2. The same analyses were done as for the experimental data and fitting the 

results by y=ax+b as in figure 8B were conducted. After 25 new random sets, the average slope a 

was 0.743 (SD = 0.051) and the average intersection b was -0.66 (SD = 8.01). The averages were close 

to the expected values. The intersections showed a greater variability than the slopes. We concluded 

that our experimental slope value of 0.743 is close to the actual biological value of the average 

participant, that probably lies between 0.69 and 0.79. The experimental intersection is less reliable, 

but the biological one is probably negative, signalling a progressive increase of the slope of SD(T) for 

retrieval times smaller than those observed here. 

To determine which route is more consistent with the data, we examined the behaviour of a model 

of the learning and retrieval process (section 5). The aim was to generate a curve for the underlying 

process similar to that in figure n3A, and to use it to determine whether the data were more 

consistent with the use of route (a) or (b).  

  

5. Modelling learning and retrieval mechanisms. 

The experimental relations between delay and response time, and between the standard deviation 

of the response time and the response time can be used to constrain a model of SR learning and 

retrieval.  

Here, we explore a model hypothesis involving mechanisms and connections that are coarsely 

consistent with the physiology and anatomy of the brain. We consider that the i) SR rule is encoded 

as increased synaptic weights ii) Learning is assumed to start when the SR rule is presented, 

continues during the delay and ends when the test stimulus is presented. Learnt weights are used 

for retrieval and iii) the retrieval time is determined by the time to reach threshold of one or a group 

of neurons.  iv) The time to produce its first spike after input starts is determining the response time. 

We investigate here if this model hypothesis is consistent with the participants’ decrease in retrieval 

time with increased D, and with the variability of the response times.  

 

5.1 Speed of synaptic learning.  

5.1.1 Physiological data.  

There is little experimental information on the speed of synaptic changes in biology.  In this section 

we estimate the learning speed from synaptic depression and spine growth data, to determine how 

fast weight changes can actually take place at the single synapse level. A theoretical model of 

learning is presented in section 5.1.2.  

Learning speed estimation from synaptic depression. Given that Long Term Potentiation (LTP) 

requires the insertion of new AMPA receptors in the synapse, information on the speed of the 

process can be gained from observing the recovery from synaptic depression, although it is difficult 

to separate pre-synaptic vesicle replenishing effects, postsynaptic AMPAR recovery processes and 

diffusive contributions. Recovery is probably dominant for large synapses while diffusion and vesicle 
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depletion dominate for small synapses (Heine et al., 2008). When intracellular calcium concentration 

is increased through NMDA activation, the recovery from depression is slowed down, indicating that 

diffusion effects can be the limiting factor in the recovery time from depression. Thus, recovery time 

constants from depression represent a lower bound on the receptors influx time during learning.  

From data published in (Heine et al., 2008), the full synaptic conductivity is restored in 

approximately 200ms. 

Estimation from the speed of growth of new spines. There is a good correlation between synapse 

area and number of AMPA receptors in a synapse (Takumi et al., 1999). Therefore, another source of 

information on the speed of learning is the observation of the speed of growth of spines. Several 

experiments have shown very fast growth of new spines in the presence of glutamate produced by 

uncaging. In Kwon and Sabatini (2011), a spine can grow to a length of 1um with an average spine 

head area of 0.4um2 in as little as 10 seconds. This is produced by 20 uncaging pulses produced at 

2Hz. The same growth can be produced by 20 pulses at 0.5Hz, in a total time of 40 sec. The process 

requires NMDA activation. The independence of pulse frequency suggests that a certain amount of 

growth occurs for each pulse with a rate of membrane area addition of at least 0.23um2/sec. In 

Takumi et al. (1999) synapses with a radius of 0.1um have no AMPAR, and are deemed “silent”, 

while those with 0.2um have a maximum number and are fully functional. The area difference 

between these two states is 0.19um2, which could be grown in just less than 1 second.  

Implications for fast learning. The data presented above provide a maximum time of learning per 

synapse of 1 sec based on spine growth and a minimum of around 200ms defined by the recovery 

time from depression.  With an input stimulus firing at around 50Hz, these boundaries allow for 

between 10 and 50 spikes to induce the desired synaptic weight.  These speeds are estimated for 

learning using existing synapses starting from a silent state. Growing new spines would take at least 

around 10secs. Very fast synaptic weigh changes, in around 200ms, appear to be achievable by the 

diffusion of receptors into the synaptic cleft.    

 

5.1.2 Modelling the time course of synaptic learning.  

We assume that each input spike caused the addition of receptors to a synapse. These receptors are 
taken from a limited pool WP of receptors available at the surface of the neuron’s membrane. Each 

spike collects a fraction  of the pool and reduces the size of the pool by the amount collected. The 
rate of pool reduction by n input spike trains firing with a frequency FIN is given by: 

INP
P FnW

dt

dW
     (10) 

As a consequence, the pool decays exponentially with time as: 

)exp()0( )( INPP FntWtW     (11) 
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The weight resources not contained in the pool are naturally distributed between all active 
synapses4,  and learning is deemed completed when the pool is empty. The learning time constant tL 
is given by  

IN

L
Fn

t





1
      (12) 

After a duration 5*tL, 99.3% of the pool resources has been transferred to synapses. The estimation 
above tells us that his takes at least 200ms, i.e. tL > 40ms.  

 Assuming a total available weight resource W0, each learning synapse will have its weight WL 
increasing as: 

))((
n

1
0)( 0 tWW)( WtW PLL    (13) 

For simplicity we will assume that all the n weights have the same value. The sum of their starting 
values WL(0) is the difference between the starting pool size WP(0) and the full pool W0: 

 )0()0( 0 LP WnWW      (14) 

Thus 

)/exp())0(((
n

1
0)( 00 LLLL ttWnWW)( WtW    (15) 

Rewriting the initial learning weight WL(0) as a fraction  of W0/n we obtain:  

)]/exp()1(1[)( 0

LL tt
n

W
 tW     (16) 

 

5.2 Neuronal firing time and variability 

5.2.1 Neuron model 

The leaky integrate-and-fire (LIF) neuron model is summarized in figure 9. A full description of the 

equations describing its operation is given in Bugmann (2012) . Here we used the LIF model with 

balanced synaptic depression (rec = RCSOMA = 50ms). This balancing ensures a maximal variability of 

the first spike, by removing most of the temporal integration effects, making the neuron a 

coincidence detector. The neuron was simulated with 8 inputs, a number that generates the same 

behaviour as a larger number of inputs and enables short simulation times. The threshold is set to 

15mV. The simulation time step was 1 ms. 

                                                           
4
 The weight increase is faster for more active inputs, leading to larger weights for these inputs. For simplicity 

we will assume here that all input fire at the same rate and all weight will therefore be roughly equal.  
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Figure 9. Diagrammatic description of the leaky integrate-and-fire neuron model used. Inputs 

from neuron j are Poisson spike trains with a frequency of 30Hz. The synapse has a transmission 

probability pij=0.9. The synaptic current is modelled as an alpha function with a maximum at 1 

ms after arrival of the input. An axonal transmission delay of 1 ms is implemented. The synapse 

exhibits synaptic depression with a recovery time constant of rec = 50ms. The soma is modelled 

as a RC circuit with time constant RCSOMA=50ms.  

 

5.2.2 Simulations 

We ran simulations of the balanced LIF model to examine if the experimental relation between the 

average response time and its standard deviation could be explained by a LIF model with synaptic 

learning.  

The variability of the firing time has at least two causes: The variability of the total synaptic weight 

achieved after a fixed learning time and the variability of the firing time due to the random passage 

of the firing threshold. Both processes were included in our simulations. 

First, we let the synaptic weights increase with 8 inputs firing at 30Hz (this frequency is appropriate 

for the areas considered (TE to Hippocampus). We did not let the neuron fire in this phase. The 

maximum possible weight was set to W0=12. The time of learning was limited to values between 70 

and 120ms, to achieve a range of response times similar to those in figure 8B. It should be noted 

that the values of the learning times are not significant here. Different learning times could have 

been used with a different rate of weight increase. Here we used = 0.08 (see equation 10).   

In a second phase, we reset the neuron (VSOMA = 0 and synapses fully recovered). Then, using the 

grown synaptic weights, we activated the same 8 inputs, and let the somatic potential grown until 

the first spike was produced.  

These two phases constituted a run. 100 runs were conducted for each set learning time. These 100 

times to fire the first  time allowed to calculate a set of average firing time values and their standard 

deviations, as shown by curve labelled 1 output in figure 10. It should be noted that an increase in 

the number of simulations from 25 to 50 and 100 did not generate more aligned points. This was 

traced back to the very skewed distribution of firing times generated by the simulations, with some 
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very long firing times occurring.  To generate points with a better alignment for figure 10, we applied 

the same filtering rule used for eliminating “outliers” in experimental data, namely removing data 

points larger than 2.5 standard deviations above the initial average value.  While, long delays 

generated by simulation are definitely not “outliers”, it makes sense to apply the same data pre-

processing to two sets of data that are to be compared. 

These initial simulations show a slope of SD(T) much larger than the experimental one. I may be 

noted that this is due to the variability of the weights generated during learning simulations. When 

the same simulations were done with a range of set initial weights, instead of a range of learning 

times, the SD(T) slope was much lower, comparable to the one in figure 8B. Another way to reduce 

the slope is to assume that the response is caused by m first spikes produced by m independent 

neurons. To determine the slope that would be generated by a pool of m=2 and m=3 output neurons, 

we divided results of the simulations into 50 sets of 2 firing times and 33 sets of 3 firing times. The 

longest of the m times was considered to be the time of response initiation.   The resulting average 

times and their SD are shown in figure 10.   

A)  

B)  

 Figure 10. Result of simulating learning and firing with a LIF neuron model. The dotted line 

reproduces the experimental result in figure 8B. A. Using a balanced LIF model, rec=50ms, 

RC=50ms, behaving as a coincidence detector. B. Using an integrating LIF neuron, rec=20ms, 

RC=75ms, 
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Figure 10A can be interpreted with the help of the results in figure 8A.  The experimental curve is to 

the left of those of the simulated underlying processes with 2 and 3 outputs. This is consistent with a 

model where simple RT and retrieval processes are both using the hippocampus route. The 

simulation curve for the one-output model has a slope too different from the experimental one to 

be considered. A smaller slope can be achieved with a LIF model with more temporal integration 

(figure10B). The main effect of increased temporal integration is to move the curves of the 

simulated underlying process to the right of the experimental curve, strengthening the case for the 

hippocampus route. 

 

The lateral shift predicted by the theory (section 4) is equal to the minimum response time of a fully 

trained neuronal system with m outputs. This consists of the shortest response time of a fully 

trained neuron, typically 10ms (Thorpe et al., 1996) and an additional 16ms delay for m=2 or 25ms 

for m=3 (average values of data plotted in figure 10). Thus the lateral shift should be of around 26 

ms for m=2 and 35ms for m=3. The shift values in figure 10 are 20ms for the coincidence detection 

neuron and 33ms for the integrating neuron. Thus, both neuron operations modes are consistent 

with the experimental data, assuming a pool of 2 or 3 independent rule encoders. As noted in 

(Britten et al., 1992), if output neurons were not truly independent, a much larger number of them 

would be needed to achieve the same result.     

The similarity between the slopes of experimental and simulated data, and a time shift between 

simulation and experiment consistent with theoretical expectations give a broad support to the 

neural model hypotheses, namely learning through random synaptic weights increases and response 

through random reaching of the firing threshold.   

 

 

5.3 Time course of learning. 

The simulations provide data to relate the time of firing the first spike with the total synaptic weight. 

This relation can then be used to estimate the values of experimental synaptic weights for various 

delays D. Figure 11 shows how total synaptic weights influence the time to producing the first spike. 

The integrating model operates with lower weights, as the inputs are integrated over time. The 

coincidence detecting neuron needs larger weights, as short term events trigger firing. To analyse 

experimental data we focused on the functions fitting curves for m=3. For the integrating neuron: 

96.0

1 )7.3(256  WT st ,     (17)  

and for the coincidence detecting neuron: 

12.1

1 )5.6(335  WT st   (18) 

The values 3.7 and 6.5 are the minimum total weights that are need to elicit output spikes of these 

two neuron models, albeit with very long latencies.  
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Figure 11. Relation between firing time and total synaptic weights for the coincidence detecting 

(balanced) LIF model and the integrating LIF model. The three sets of data for each model 

correspond to pools of m-1, 2 and 3 output neurons. 

We inverted formulas (17) and (18) to calculate the weights corresponding to the average response 

times over sessions 2, 3 and 4 shown in figure 3, that depicts the response times from which the 

simple reaction time has been subtracted. We added the estimate value of T20=10ms to these values 

to comply with the anatomical all-hippocampus model (equation (7) in section 4).     

 

Figure 12. Weights for LIF neurons in a pool of 3 that explain the behavioural response times in 

figure 3 (average times over sessions 2, 3 and 4). Two sets of values have been calculated by 

assuming either coincidence detecting neurons or integrating neurons. The lines are fits to the 

data with the theory of synaptic learning in section 5 (equation 16).  

The two curves in figure 12 are produced by our model of synaptic learning (equation (16) in section 

5.1.2) with parameters given in table 1. The fits are reasonably good, except for the point at 1500ms 

where subjects showed signs of loss of memory of the encoded rule.  It is noteworthy that the 

learning rate during the delay is insufficient to account for a full increase during the SR rule 
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presentation period. This is reflected in the  parameter indicating that synapse have an initial 

weight of half the maximum total weight at time 0. This may be the case, but is unlikely, at least for 

the integrating model, as the initial weight is above the minimal weight necessary for the neuron to 

become responsive. Another possibility is that learning is much faster during SR rule presentation. 

During that time, rule encoding neurons receive actual sensory input, and are able to fire at a high 

rate. During the delay, we assumed that these neurons were activated by memory firing in PFC that 

may support a much weaker activity in these neurons. Therefore, the curves in figure 12 appear to 

be consistent with our hypotheses. Indeed, future measurements with shorter SR rule presentation 

times would allow testing the model further.  

The results show that our model can explain the data with two sets of model parameters in quite 

different regimes of operation of the LIF neuron model. This indicates the robustness of our 

approach. 

Table 1. Parameters of the synaptic learning model fitting the calculated experimental weight 

increase with learning time. 

 Fit to weights generated by the 
coincident detection model 

Fit to weights generated by the 
temporal integration model 

Maximum total weight 
resources available. W0 

11.8 8.3 

Initial fraction of total 
resources already allocated to 

synapses:  

0.5 0.5 

Learning rate: n **FIN 1.4 1.4 

 

6 Discussion 

In this experiment, participants had to process two sets of instructions. 1. At the start of the 

experiment, they were instructed to interpret an image as an instruction, then to interpret a second 

image as a response request. 2. During the experiment, they processed a series of visual instructions 

presented. The first instruction process puts in place a control network with connections and 

switches that manage the behaviour during the experiment, including processing the visual 

instructions. This paper focuses on the dynamics of how participants process the visual instructions. 

This is a much simpler problem than understanding how the first instruction set is implemented, that 

engages a much larger network of brain areas, from language areas to multiple prefrontal areas (see 

e.g. Dumontheil et al., 2011).  

This paper reports on what is probably the first experiment designed to measure the speed of 

learning from instructions. The results are surprising because they show that learning the stimulus-

response association appears to have been completed to a large extent within 250 ms (fig. 12). This 

value is a very short time close to the physiological limit for monosynaptic learning estimated from 

the dynamics of recovery from synaptic depression. The results show the anticipated prolonged 

response times for very short delays.   

The is a clear reduction of response times between session 1 and sessions 2,3 and 4. (fig. 3). It is not 

clear what mechanism is causing this.  A reduction in response time with practice has been observed 
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by Ruge and Wolfensteller (2010) when applying the same SR rules repeatedly. A similar reduction 

has also been related to faster response learning in the literature on priming (Dobbins et al., 2004).  

To explain the shape of the response time curves, we developed a model of learning and response 

generation. This model has several innovative features. First it was assumed that associative learning 

is not directly linking the stimulus to the motor response, but linking the visual representations of 

the stimulus and of response. The associative activation of the response representation then in turn 

activates the motor response. This restricts the learning requirements to local connections within a 

cortical area. The fact that the model suggests incomplete learning and the short learning time by 

subjects restricts the learnt connections to be monosynaptic, as opposed, e.g., to connections in a 

multilayer model of successive brain areas (Bugmann, 2012).   

The second innovative element of the model is to combine the randomness of synaptic weights 

generated in a Hebbian way with the randomness of the crossing time of the firing threshold to 

explain the variability of the behavioural response times. This is the simplest possible model, given 

our knowledge of neurophysiology. Its predictions regarding the number of neurons needed to 

encode the rule  is  consistent with other works showing that perceptual judgements are based on “a 

small number of independent neural signals” (Britten et al, 1992) or “no more than a few cells” 

(Zohary and Hillman, 1990).  

The results on the time course of synaptic modification suggest that fast learning may be taking 

place during the presentation of the SR rule, followed by slower learning during the delay period. 

The later may be supported by persistent activity in PFC that feeds back to IT (Rempel-Clower and 

Barbas , 2000). To test this hypothesis calls for measurements with shorter SR presentation times. 

Issues of prolonged firing of sensory neurons may complicate such measurement. 

A problem not considered here, and in most models, is unlearning. The new weights should really 

disappear before a new SR rule is presented. Several participants reported a difficulty in 

remembering the SR rule for long delays (1100 ms and 1300 ms). It is possible that the learnt 

weights decay within a few seconds. Future experiments with longer delays could shed light on the 

duration of SR encoding. 

The problem of generating responses from partially trained weights is not too dissimilar from the 

problem of responding to incomplete sensory stimuli. An examination of the literature in this area 

(e.g. Wilson, 2009) could shed some light on the most likely mechanism to be at work in fast learning  

and responding. Results by Bugmann (2007) show that visual neurons need less than 50% of their 

inputs to be active to start firing. This low selectivity enables them to respond rapidly when all inputs 

are present and still respond, but with longer delays, to incomplete patterns.  

Other models deal with the problem of mapping sensory input to motor outputs. In the models by 

(Hamker, 2005; Huang et al., 2013; Deco and Rolls, 2005) a similar network of brain areas as ours is 

used. In the works of Zylberberg et al., (2010) a more abstract architecture is analysed. Hamker 

(2005) addresses the delayed matching-to-sample problem without using synaptic learning. 

Sustained top-down firing is used to bias the competition between subsequently presented patterns.  

This is not a suitable mechanism to encode S-R associations. Huang et al. (2013) propose a dual-

route model. Fast learning and slow processing is using a route from hippocampus to basal ganglia, 

PFC and PM.  Slow learning but fast processing is using the PPC and its link to PM. However, learning 
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in both routes is too slow for our data. The hippocampal route requires around 5 repetitions of an 

instruction to store it correctly and the PPC route requires replays of stimulus-to-action rules by the 

hippocampus to slowly build “habits”.  In the model by Deco and Rolls (2005) S-R rules are 

represented by existing pools of neurons in the PFC, and rules are selected through a biased 

competition. The creation of pools, i.e. the encoding of instructions, is not modelled.  Zylberberg et 

al. (2010) also assume a pre-existing representation pool for all possible S-R combinations.  Other 

models using reinforcement learning are too slow for our purpose. The approach by Huang et al., 

(2013) appears the most promising for modelling our data, but its hippocampus learning model is 

quite complex and would need re-examining in view of the fast one shot learning shown here.  

 

7 Conclusion 

The new experiment described here clearly shows an increase in response times when instructed 

stimulus-response associations are tested within 300ms to 700ms after the start of the instruction. 

All participants were able to respond with a low error rate after only 250ms of available learning 

time. It is proposed here that the diffusion of AMPA receptor into the synaptic cleft is a mechanism 

fast enough to explain the data.   

A robust neural model has been proposed that explains the increase of response time and their 

variability using simple mechanisms of synaptic learning assuming a limited total available weight 

resource, followed by random crossing of the firing threshold produced by random inputs. A pool of 

2 or 3 of such independent neurons can explain the behavioural responses. Such small numbers have 

been reported elsewhere for perceptual discrimination tasks. Indeed, much larger number may be 

needed to produce the same results if they are not truly independent, e.g. due to shared inputs.    

In summary, this work presents the first measurement of the speed of learning SR associations and 

proposes a compact and testable model to explain the observations. 
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